AUCTEX

A much enhanced IATEX mode for Emacs.
Version 11.53

by Kresten Krab Thorup
updates from 6.1 to 11.13 by Per Abrahamsen
updates from 11.14 by David Kastrup

Copyright (©) 1993, 1994, 1995, 2001, 2002, 2004 Free Software Foundation, Inc. Copyright
© 1992 Kresten Krab Thorup

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided also that the section entitled “Copying” is included
exactly as in the original, and provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Copying 1

Copying

(This text stolen from the TEXinfo 2.16 distribution).

The programs currently being distributed that relate to AUCTEX include lisp files for
Emacs (and XEmacs). These programs are free; this means that everyone is free to use
them and free to redistribute them on a free basis. The AUCTEX related programs are not
in the public domain; they are copyrighted and there are restrictions on their distribution,
but these restrictions are designed to permit everything that a good cooperating citizen
would want to do. What is not allowed is to try to prevent others from further sharing any
version of these programs that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to AUCTEX, that you receive source code or else can get it if you want
it, that you can change these programs or use pieces of them in new free programs, and
that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the AUCTEX related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to AUCTEX. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to AUCTEX are found in the General Public Licenses that accompany them.

Chapter 1: Introduction to AUCTEX 2

1 Introduction to AUCTREX

This section of the AUCTEX manual gives a brief overview of what AUCTEX is, and the
section is also available as a ‘README’ file. It is not an attempt to document AUCTEX. Real
documentation for AUCTEX is available in the rest of the manual, which you can find in
the ‘doc’ directory.

Read the ‘INSTALL’ or ‘INSTALL.windows’ file respectively for information about how to
install AUCTEX. The files comprise the same information as the Installation chapter in the
AUCTEX manual.

If you are upgrading from the previous version of AUCTEX, the latest changes can be
found in the ‘CHANGES’ file. If you are upgrading from an older version, read the History
chapter in the AUCTEX manual.

AUCTEX is a comprehensive customizable integrated environment for writing input files

for TEX/IATEX/ConTEXt using GNU Emacs.
AUCTEX lets you run TEX /IATEX /ConTEXt and IATEX /ConTEXt-related tools, such as a

output filters or post processor from inside Emacs. Especially ‘running IATEX’ is interesting,
as AUCTEX lets you browse through the errors TEX reported, while it moves the cursor
directly to the reported error, and displays some documentation for that particular error.
This will even work when the document is spread over several files.

AUCTEX automatically indents your ‘IATEX-source’, not only as you write it — you can
also let it indent and format an entire document. It has a special outline feature, which can
greatly help you ‘getting an overview’ of a document.

Apart from these special features, AUCTEX provides a large range of handy Emacs
macros, which in several different ways can help you write your IATEX/ConTEXt documents
fast and painlessly.

All features of AUCTEX are documented using the GNU Emacs online documentation
system. That is, documentation for any command is just a key click away!

AUCTEX is written entirely in Emacs-Lisp, and hence you can easily add new features
for your own needs. It was not made as part of any particular employment or project (apart
from the AUCTEX project itself). AUCTEX is distributed under the ‘GNU Emacs General
Public License’ and may therefore almost freely be copied and redistributed.

The next sections are a short introduction to some ‘actual’ features. For further infor-
mation, refer to the built-in online documentation of AUCTEX.

1.1 Indentation and filling

AUCTEX may automatically indent your document as you write it. By pressing
instead of at the end of a line, the current line is indented by two spaces according to
the current environment level, and the cursor is moved down one line. By pressing (TAB),
the current line is indented, and the cursor stays where it is. The well-known Emacs feature
fill-paragraph (M-q) is reimplemented especially for AUCTEX to follow the indentation
(even in commented parts of the document). A special command LaTeX-fill-buffer lets
you indent an entire document like the well-known C utility indent (this time, only according
to the IATEX structure :-).

Chapter 1: Introduction to AUCTEX 3

1.2 Completion

By studying your ‘\documentclass’ command (in the top of your document), and con-
sulting a precompiled list of (La)TEX symbols from a large number of TEX and IXTEX files,
AUCTEX is aware of the IATEX commands you should be able to use in this particular
document. This ‘knowledge’ of AUCTEX is used for two purposes.

1. To make you able to ‘complete’ partly written IATEX commands. You may e.g. write
\renew and press M-(TAB) (TeX-complete-symbol), and then AUCTEX will complete
the word ‘\renewcommand’ for you. In case of ambiguity it will display a list of possible
completions.

2. To aid you inserting environments, that is \begin - \end pairs. This is done by pressing
C-c¢ C-e (IATpX-environment), and you will be prompted for which ‘environment’ to
insert.

1.3 Editing your document

A number of more or less intelligent keyboard macros have been defined to aid you
editing your document. The most important are listed below.

LaTeX-environment
(C-c C-e) Insert a ‘\begin{} — ‘\end{}’ pair as described above.

LaTeX-section
(C-c C-s) Insert one of ‘\chapter’, ‘\section’, etc.

TeX-font (C-c C-f C-r, C-c C-f C-i, C-c C-f C-b) Insert one of ‘\textrm{}’),
N\textit{ \/} ‘\textbf{ }’ etc.

A number of additional functions are available. But it would be far too much to write
about here. Refer to the rest of the AUCTEX documentation for further information.

1.4 Running KTEX

When invoking one of the commands TeX-command-master (C-c C-c) or TeX-command-
region (C-c C-r) IXTEX is run on either the entire current document or a given region of
it. The Emacs view is split in two, and the output of TEX is printed in the second half of
the screen, as you may simultaneously continue editing your document. In case TEX finds
any errors when processing your input you can call the function TeX-next-error (C-c ¢)
which will move the cursor to the first given error, and display a short explanatory text
along with the message TEX gave. This procedure may be repeated until all errors have
been displayed. By pressing C-c C-w (TeX-toggle-debug-boxes) you can toggle whether
the browser also should notify over-full /under-full boxes or not.

Once you’ve successfully formatted your document, you may preview or print it by
invoking TeX-command-master again.

Chapter 1: Introduction to AUCTEX 4

1.5 Outlines

Along with AUCTEX comes support for outline mode for Emacs, which lets you browse
the sectioning structure of your document, while you will still be able to use the full power
of the rest of the AUCTEX functionality.

1.6 Availability

The most recent version is always available at
http://ftp.gnu.org/pub/gnu/auctex/
WWW users may want to check out the AUCTEX page at
http://www.gnu.org/software/auctex/

1.7 Contacts

There has been established a mailing list for help, bug reports, feature requests and
general discussion about AUCTEX. You're very welcome to join. Traffic average at an article
by day, but they come in bursts. If you are only interested in information on updates, you
could refer to the newsgroups ‘comp.text.tex’ and ‘gnu.emacs.sources’.

If you want to contact the AUCTEX mailing list, send mail to mailto:auc-tex-
subscribe@sunsite.dk in order to join. Articles should be sent to mailto:auc-
tex@sunsite.dk.

To contact the current maintainers of AUCTEX directly, email mailto:auc-tex_
mgrOsunsite.dk.

Chapter 2: Inserting Frequently Used Commands 5

2 Inserting Frequently Used Commands

The most commonly used commands/macros of AUCTEX are those which simply insert
templates for often used TEX and/or INTEX /ConTEXt constructs, like font changes, handling
of environments, etc. These features are very simple, and easy to learn, and help you avoid
stupid mistakes like mismatched braces, or ‘\begin{}’-‘\end{}’ pairs.

2.1 Insertion of Quotes, Dollars, and Braces

In TEX, literal double quotes ‘"like this"’ are seldom used, instead two single quotes
are used ‘‘‘like this’’’. To help you insert these efficiently, AUCTEX allows you to
continue to press " to insert two single quotes. To get a literal double quote, press " twice.

TeX-insert-quote count [Command]|
(") Insert the appropriate quote marks for TEX.

Inserts the value of TeX-open-quote (normally ‘¢ ¢’) or TeX-close-quote (normally

©227) depending on the context. With prefix argument, always inserts ‘"’ characters.

TeX-open-quote [User Option]
String inserted by typing " to open a quotation.

TeX-close-quote [User Option]
String inserted by typing " to close a quotation.

TeX-quote-after-quote [User Option]

Determines the behavior of ". If it is non-nil, typing " will insert a literal double quote.
The respective values of TeX-open-quote and TeX-close-quote will be inserted after
typing " once again.

If you include the style files ‘german’ or ‘ngerman’ TeX-open-quote and TeX-close-
quote will be set to the values of LaTeX-german-open-quote and LaTeX-german-close-
quote respectively. TeX-quote-after-quote will be set to the value of LaTeX-german-
quote-after-quote. If you write texts which facilitate the style files mentioned before,
you should customize those special variables instead of the standard variables.

In AUCTEX, dollar signs should match like they do in TEX. This has been partially
implemented, we assume dollar signs always match within a paragraph. The first ‘¢’ you
insert in a paragraph will do nothing special. The second ‘¢’ will match the first. This
will be indicated by moving the cursor temporarily over the first dollar sign. If you enter
a dollar sign that matches a double dollar sign ‘$$’ AUCTREX will automatically insert two
dollar signs. If you enter a second dollar sign that matches a single dollar sign, the single
dollar sign will automatically be converted to a double dollar sign.

TeX-insert-dollar arg [Command]
($) Insert dollar sign.

Show matching dollar sign if this dollar sign end the TEX math mode. Ensure double
dollar signs match up correctly by inserting extra dollar signs when needed.

With optional arg, insert that many dollar signs.

Chapter 2: Inserting Frequently Used Commands 6

To avoid unbalanced braces, it is useful to insert them pairwise. You can do this by
typing C-c {.

TeX-insert-braces [Command]|
(C-c {) Make a pair of braces and position the cursor to type inside of them.

2.2 Inserting Font Specifiers

Perhaps the most used keyboard commands of AUCTEX are the short-cuts available for
easy insertion of font changing macros.

If you give an argument (that is, type C-u) to the font command, the innermost font will
be replaced, i.e. the font in the TEX group around point will be changed. The following
table shows the available commands, with x indicating the position where the text will be
inserted.

C-c C-f C-r

Insert roman \textrm{x} text.
C-c C-f C-b

Insert bold face ‘\textbf{x}’ text.
C-c C-f C-1

Insert italics ‘\textit{x} text.
C-c C-f C-e

Insert emphasized ‘\emph{x}’ text.
C-c C-f C-s

Insert slanted ‘\textsl{x}’ text.
C-c C-f C-t

Insert typewriter ‘\texttt{x}’ text.
C-c C-f C-c

Insert SMALL CAPS ‘\textsc{x} text.
C-c C-f C-d

Delete the innermost font specification containing point.

TeX-font arg [Command]
(C-c C-f) Insert template for font change command.

If replace is not nil, replace current font. what determines the font to use, as specified
by TeX-font-1list.

TeX-font-list [User Option]
List of fonts used by TeX-font.

Each entry is a list with three elements. The first element is the key to activate the
font. The second element is the string to insert before point, and the third element
is the string to insert after point. An optional fourth element means always replace
if not nil.

Chapter 2: Inserting Frequently Used Commands 7

2.3 Inserting chapters, sections, etc.

Insertion of sectioning macros, that is ‘\chapter’, ‘\section’, ‘\subsection’, etc. and
accompanying ‘\label’”s may be eased by using C-c C-s. This command is highly cus-
tomizable, the following describes the default behavior.

When invoking you will be asked for a section macro to insert. An appropriate default is
automatically selected by AUCTEX, that is either: at the top of the document; the top level
sectioning for that document style, and any other place: The same as the last occurring
sectioning command.

Next, you will be asked for the actual name of that section, and last you will be asked for
a label to be associated with that section. The label will be prefixed by the value specified
in LaTeX-section-hook.

LaTeX-section arg [Command]|
(C-c C-s) Insert a sectioning command.

Determine the type of section to be inserted, by the argument arg.
e If arg is nil or missing, use the current level.
e If arg is a list (selected by C-u), go downward one level.
e If arg is negative, go up that many levels.

e If arg is positive or zero, use absolute level:

+ 0: part

+ 1 : chapter

+ 2 : section

+ 3 : subsection

+ 4 : subsubsection
+ 5 : paragraph

+ 6 : subparagraph
The following variables can be set to customize the function.

LaTeX-section-hook
Hooks to be run when inserting a section.

LaTeX-section-label
Prefix to all section references.

The precise behavior of LaTeX-section is defined by the contents of LaTeX-section-
hook.

LaTeX-section-hook [User Option]

List of hooks to run when a new section is inserted.

The following variables are set before the hooks are run
level Numeric section level, default set by prefix arg to LaTeX-section.
name Name of the sectioning command, derived from level.

title The title of the section, default to an empty string.

Chapter 2: Inserting Frequently Used Commands 8

toc Entry for the table of contents list, default nil.

done-mark
Position of point afterwards, default nil meaning after the inserted text.

A number of hooks are already defined. Most likely, you will be able to get the desired
functionality by choosing from these hooks.

LaTeX-section-heading
Query the user about the name of the sectioning command. Modifies
level and name.

LaTeX-section-title
Query the user about the title of the section. Modifies title.

LaTeX-section-toc
Query the user for the toc entry. Modifies toc.

LaTeX-section-section
Insert IATEX section command according to name, title, and toc. If toc is
nil, no toc entry is inserted. If toc or title are empty strings, done-mark
will be placed at the point they should be inserted.

LaTeX-section-label
Insert a label after the section command. Controlled by the variable
LaTeX-section-label.

To get a full featured LaTeX-section command, insert

(setq LaTeX-section-hook

> (LaTeX-section-heading
LaTeX-section-title
LaTeX-section-toc
LaTeX-section-section
LaTeX-section-label))

in your ‘.emacs’ file.

The behavior of LaTeX-section-label is determined by the variable LaTeX-section-
label.

LaTeX-section-label [User Option]
Default prefix when asking for a label.

If it is a string, it is used unchanged for all kinds of sections. If it is nil, no label is
inserted. If it is a list, the list is searched for a member whose car is equal to the
name of the sectioning command being inserted. The cdr is then used as the prefix.
If the name is not found, or if the cdr is nil, no label is inserted.

By default, chapters have a prefix of ‘cha:’ while sections and subsections have a
prefix of ‘sec:’. Labels are not automatically inserted for other types of sections.

Chapter 2: Inserting Frequently Used Commands 9

2.4 Inserting Environment Templates

A large apparatus is available that supports insertions of environments, that is
‘\begin{}’ — “\end{}’ pairs.

AUCTEX is aware of most of the actual environments available in a specific document.
This is achieved by examining your ‘\documentclass’ command, and consulting a precom-
piled list of environments available in a large number of styles.

You insert an environment with C-c C-e, and select an environment type. Depending on
the environment, AUCTEX may ask more questions about the optional parts of the selected
environment type. With C-u C-c C-e you will change the current environment.

LaTeX-environment arg [Command]|
(C-c C-e) AUCTEX will prompt you for an environment to insert. At this prompt,
you may press or to complete a partially written name, and/or to get a
list of available environments. After selection of a specific environment AUCTEX may
prompt you for further specifications.
If the optional argument arg is not-nil (i.e. you have given a prefix argument), the
current environment is modified and no new environment is inserted.

As a default selection, AUCTEX will suggest the environment last inserted or, as the
first choice the value of the variable LaTeX-default-environment.

LaTeX-default-environment [User Option]
Default environment to insert when invoking ‘LaTeX-environment’ first time.

If the document is empty, or the cursor is placed at the top of the document, AUCTEX
will default to insert a ‘document’ environment.

Most of these are described further in the following sections, and you may easily specify
more, as described in ‘Customizing environments’.

You can close the current environment with C-c], but we suggest that you use C-c C-e
to insert complete environments instead.

LaTeX-close-environment [Command]|
(C-c 1) Insert an ‘\end’ that matches the current environment.

2.4.1 Equations

When inserting equation-like environments, the ‘\label’ will have a default prefix, which
is controlled by the following variables:

LaTeX-equation-label [User Option]
Prefix to use for ‘equation’ labels.

LaTeX-eqnarray-label [User Option]
Prefix to use for ‘eqnarray’ labels.

LaTeX-amsmath-label [User Option]
Prefix to use for amsmath equation labels. Amsmath equations include ‘align’,
‘alignat’, ‘xalignat’, ‘aligned’, ‘flalign’ and ‘gather’.

Chapter 2: Inserting Frequently Used Commands 10

2.4.2 Floats

Figures and tables (i.e., floats) may also be inserted using AUCTEX. After choosing
either ‘figure’ or ‘table’ in the environment list described above, you will be prompted for
a number of additional things.

float-to This field is the option of float environments that controls how they are placed in
the final document. In IATEX this is a sequence of the letters ‘htbp’ as described
in the IATEX manual. The value will default to the value of LaTeX-float.

caption This is the caption of the float.

label The label of this float. The label will have a default prefix, which is controlled
by the variables LaTeX-figure-label and LaTeX-table-label.

Moreover, in the case of a ‘figure’ environment, you will be asked if you want to insert
a ‘center’ environment inside the figure.

LaTeX-float [User Option]
Default placement for floats.

LaTeX-figure-label [User Option]
Prefix to use for figure labels.

LaTeX-table-label [User Option]

Prefix to use for table labels.

2.4.3 Itemize-like

In an itemize-like environment, nodes (i.e., ‘\item’s) may be inserted using C-c (LFD).
M) y g

LaTeX-insert-item [Command]
(C-c TrD)) Close the current item, move to the next line and insert an appropriate
“\item’ for the current environment. That is, ‘itemize’ and ‘enumerate’ will have
“\item ’ inserted, while ‘description’ will have ‘\item[]’ inserted.

2.4.4 Tabular-like

When inserting Tabular-like environments, that is, ‘tabular’ ‘array’ etc., you will be
prompted for a template for that environment. Related variables:

LaTeX-default-format [User Option]
Default format string for array and tabular environments.

LaTeX-default-position [User Option]
Default position string for array and tabular environments. If nil, act like the empty
string is given, but don’t prompt for a position.

2.4.5 Customizing environments

See Section 9.3 [Adding Environments|, page 38, for how to customize the list of known
environments.

Chapter 3: Advanced Editing Features 11

3 Advanced Editing Features

The previous chapter described how to write the main body of the text easily and
with a minimum of errors. In this chapter we will describe some features for entering more
specialized sorts of text, for formatting the source by indenting and filling and for navigating
through the document.

3.1 Entering Mathematics

TEX is written by a mathematician, and has always contained good support for format-
ting mathematical text. AUCTEX supports this tradition, by offering a special minor mode
for entering text with many mathematical symbols. You can enter this mode by typing C-c

LaTeX-math-mode [Command]|
(C-c 7) Toggle LaTeX-math-mode. This is a minor mode rebinding the key LaTeX-
math-abbrev-prefix to allow easy typing of mathematical symbols. ¢ will read a
character from the keyboard, and insert the symbol as specified in LaTeX-math-1list.
If given a prefix argument, the symbol will be surrounded by dollar signs.

You can use another prefix key (instead of ¢) by setting the variable LaTeX-math-
abbrev-prefix.

LaTeX-math-abbrev-prefix [User Option]

A string containing the prefix of LaTeX-math-mode commands; This value defaults to
¢

The variable LaTeX-math-1ist holds the actual mapping.

LaTeX-math-list [User Option]
A list containing key command mappings to use in LaTeX-math-mode. The car of
each element is the key and the cdr is the macro name.

LaTeX-math-menu-unicode [User Option]
Whether the LaTeX menu should try using Unicode for effect. Your Emacs built
must be able to display include Unicode characters in menus for this feature.

AUCTEX’s reference card ‘tex-ref.tex’ includes a list of all math mode commands.
3.2 Completion

Emacs lisp programmers probably know the lisp-complete-symbol command, usually
bound to M-(TAB). Users of the wonderful ispell mode know and love the ispell-complete-
word command from that package. Similarly, AUCTEX has a TeX-complete-symbol com-
mand, usually bound to M-(TAB). Using LaTeX-complete-symbol makes it easier to type
and remember the names of long IATEX macros.

In order to use TeX-complete-symbol, you should write a backslash and the start of the
macro. Typing M-(TAB) will now complete as much of the macro, as it unambiguously can.
For example, if you type “\renewc’’ and then ‘M-(TAB), it will expand to “\renewcommand”’.

Chapter 3: Advanced Editing Features 12

TeX-complete-symbol [Command]|
(M-TAB)) Complete TEX symbol before point.

A more direct way to insert a macro is with TeX-insert-macro, bound to C-c C-m. It
has the advantage over completion that it knows about the argument of most standard
IATEX macros, and will prompt for them. It also knows about the type of the arguments,
so it will for example give completion for the argument to ‘\include’. Some examples are
listed below.

TeX-insert-macro [Command]|
(C-c C-m) Prompt (with completion) for the name of a TEX macro, and if AUCTEX
knows the macro, prompt for each argument.

As a default selection, AUCTEX will suggest the macro last inserted or, as the first choice
the value of the variable TeX-default-macro.

TeX-insert-macro-default-style [User Option]
Specifies whether TeX-insert-macro will ask for all optional arguments.

If set to the symbol show-optional-args, TeX-insert-macro asks for optional argu-
ments of TEX macros. If set to mandatory-args-only, TeX-insert-macro asks only
for mandatory argument. When TeX-insert-macro is called with prefix argument
(C-u), it’s the other way round.

Note that for some macros, there are special mechanisms, e.g. LaTeX-
includegraphics-options-alist.

TeX-default-macro [User Option]
Default macro to insert when invoking TeX-insert-macro first time.

A faster alternative is to bind the function TeX-electric-macro to ‘\’. This can be
done by setting the variable TeX-electric-escape

TeX-electric-escape [User Option]
If this is non-nil when AUCTEX is loaded, the TEX escape character ‘\” will be bound

to TeX-electric—-macro

The difference between TeX-insert-macro and TeX-electric-macro is that space will
complete and exit from the minibuffer in TeX-electric-macro. Use if you merely
want to complete.

TeX-electric-macro [Command]
Prompt (with completion) for the name of a TEX macro, and if AUCTEX knows the
macro, prompt for each argument. Space will complete and exit.

By default AUCTEX will put an empty set braces ‘{}’ after a macro with no arguments to
stop it from eating the next whitespace. This can be stopped by entering LaTeX-math-mode,
see Section 3.1 [Mathematics], page 11, or by setting TeX-insert-braces to nil

TeX-insert-braces [User Option]
If non-nil, append a empty pair of braces after inserting a macro.

Chapter 3: Advanced Editing Features 13

Completions work because AUCTEX can analyze TEX files, and store symbols in emacs
lisp files for later retrieval. See Chapter 8 [Automatic], page 32, for more information.

AUCTEX will also make completion for many macro arguments, for example existing
labels when you enter a ‘\ref’ macro with TeX-insert-macro or TeX-electric-macro,
and BibTEX entries when you enter a ‘\cite’ macro. For this kind of completion to work,
parsing must be enabled as described in see Chapter 6 [Parsing Files], page 28. For ‘\cite’
you must also make sure that the BibTEX files have been saved at least once after you
enabled automatic parsing on save, and that the basename of the BibTgX file does not
conflict with the basename of one of TEX files.

3.3 Commenting

It is often necessary to comment out temporarily a region of TEX or IATEX code. This
can be done with the commands C-c ; and C-c /. C-c ; will comment out all lines in the
current region, while C-c 7 will comment out the current paragraph. Type C-c ; again to
uncomment all lines of a commented region, or C-c 7 again to uncomment all comment
lines around point. These commands will insert or remove a single ‘%’ respectively.

TeX-comment-or-uncomment-region [Command]|
(C-c ;) Add or remove ‘)’ from the beginning of each line in the current region. Un-
commenting works only if the region encloses solely commented lines. If AUCTEX
should not try to guess if the region should be commented or uncommented the com-
mands TeX-comment-region and TeX-uncomment-region can be used to explicitly
comment or uncomment the region in concern.

TeX-comment-or-uncomment-paragraph [Command]|
(C-c %) Add or remove ‘%’ from the beginning of each line in the current paragraph.
When removing ‘%’ characters the paragraph is considered to consist of all preceding
and succeeding lines starting with a ‘%’, until the first non-comment line.

3.4 Indenting

Indentation means the addition of whitespace at the beginning of lines to reflect special
syntactical constructs. This makes it easier to see the structure of the document, and to
catch errors such as a missing closing brace. Thus, the indentation is done for precisely the
same reasons that you would indent ordinary computer programs.

Indentation is done by IATEX environments and by TEX groups, that is the body of an
environment is indented by the value of LaTeX-indent-level (default 2). Also, items of an
‘itemize-like’ environment are indented by the value of LaTeX-item-indent, default —2. If
more environments are nested, they are indented ‘accumulated’ just like most programming
languages usually are seen indented in nested constructs.

You can explicitely indent single lines, usually by pressing (TAB), or marked regions by
calling indent-region on it. If you have auto-fill-mode enabled and a line is broken
while you type it, Emacs automatically cares about the indentation in the following line.
If you want to have a similar behavior upon typing (RET), you can customize the variable
TeX-newline-function and change the default of newline which does no indentation to

Chapter 3: Advanced Editing Features 14

newline-and-indent which indents the new line or reindent-then-newline—-and-indent
which indents both the current and the new line.

There are certain IATEX environments which should be indented in a special way, like
‘tabular’ or ‘verbatim’. Those environments may be specified in the variable LaTeX-
indent-environment-list together with their special indentation functions. Taking the
‘verbatim’ environment as an example you can see that current-indentation is used
as the indentation function. This will stop AUCTEX from doing any indentation in the
environment if you hit for example.

There are environments in LaTeX-indent-environment-1ist which do not bring a spe-
cial indentation function with them. This is due to the fact that first the respective functions
are not implemented yet and second that filling will be disabled for the specified environ-
ments. This shall prevent the source code from being messed up by accidently filling those
environments with the standard filling routine. If you think that providing special filling
routines for such environments would be an appropriate and challenging task for you, you
are invited to contribute. (See Section 3.5 [Filling], page 15, for further information about
the filling functionality)

The check for the indentation function may be enabled or disabled by customizing the
variable LaTeX-indent-environment-check.

As a side note with regard to formatting special environments: Newer Emacsen include
‘align.el’ and therefore provide some support for formatting ‘tabular’ and ‘tabbing’
environments with the function align-current which will nicely align columns in the source
code.

AUCTEX is able to format commented parts of your code just as any other part. This
means IATEX environments and TEX groups in comments will be indented syntactically
correct if the variable LaTeX-syntactic-comments is set to t. If you disable it, comments
will be filled like normal text and no syntactic indentation will be done.

Following you will find a list of most commands and variables related to indenting with
a small summary in each case:
TAB LaTeX-indent-1line will indent the current line.
LFD newline-and-indent inserts a new line (much like (RET)) and moves the cursor
to an appropriate position by the left margin.

Most keyboards nowadays don’t have a linefeed key and C-j is tedious to type.
Therefore you can customize AUCTEX to perform indentation (or to make
coffee) upon typing as well. The respective option is called TeX-newline-

function.
C-j Alias for
LaTeX-indent-environment-list [User Option]

List of environments with special indentation. The second element in each entry is
the function to calculate the indentation level in columns.

The filling code currently cannot handle tabular-like environments which will be com-
pletely messed-up if you try to format them. This is why most of these environments
are included in this customization option without a special indentation function. This
will prevent that they get filled.

Chapter 3: Advanced Editing Features 15

LaTeX-indent-level [User Option]
Number of spaces to add to the indentation for each ‘\begin’ not matched by a ‘\end’.

LaTeX-item-indent [User Option]
Number of spaces to add to the indentation for ‘\item’’s in list environments.

TeX-brace-indent-level [User Option]
Number of spaces to add to the indentation for each ‘{’ not matched by a ‘}’.

LaTeX-syntactic-comments [User Option]
If non-nil comments will be filled and indented according to IATEX syntax. Otherwise
they will be filled like normal text.

TeX-newline-function [User Option]
Used to specify the function which is called when is pressed. This will normally
be newline which simply inserts a new line. In case you want to have AUCTEX do
indentation as well when you press (RET), use the built-in functions newline-and-
indent or reindent-then-newline-and-indent. The former inserts a new line and
indents the following line, i.e. it moves the cursor to the right position and therefore
acts as if you pressed {LFD). The latter function additionally indents the current line.
If you choose ‘Other’, you can specify your own fancy function to be called when

is pressed.

3.5 Filling

Filling deals with the insertion of line breaks to prevent lines from becoming wider
than what is specified in fill-column. The linebreaks will be inserted automatically if
auto-fill-mode is enabled. In this case the source is not only filled but also indented
automatically as you write it.

auto-fill-mode can be enabled for AUCTEX by calling turn-on-auto-£fill in one of
the hooks AUCTEX is running. For all text modes with text-mode-hook, for all AUCTEX
modes with TeX-mode-hook or for specific modes with plain-TeX-mode-hook, LaTeX-mode-
hook, ConTeXt-mode-hook or docTeX-mode-hook. As an example, if you want to enable
auto-fill-mode in LaTeX-mode, put the following into your init file:

(add-hook ’LaTeX-mode-hook ’turn-on-auto-fill)

You can manually fill explicitely marked regions, paragraphs, environments, complete
sections, or the whole buffer. (Note that manual filling in AUCTEX will indent the start of
the region to be filled in contrast to many other Emacs modes.)

There are some syntactical constructs which are handled specially with regard to filling.
These are so-called code comments and paragraph commands.

Code comments are comments preceded by code or text in the same line. Upon filling
a region, code comments themselves will not get filled. Filling is done from the start of
the region to the line with the code comment and continues after it. In order to prevent
overfull lines in the source code, a linebreak will be inserted before the last non-comment
word by default. This can be changed by customizing LaTeX-fill-break-before-code-
comments. If you have overfull lines with code comments you can fill those explicitely by

Chapter 3: Advanced Editing Features 16

calling LaTeX-fill-paragraph or pressing M-q with the cursor positioned on them. This
will add linebreaks in the comment and indent subsequent comment lines to the column of
the comment in the first line of the code comment. In this special case M-q only acts on the
current line and not on the whole paragraph.

Lines with ‘\par’ are treated similarly to code comments, i.e. ‘\par’ will be treated
as paragraph boundary which should not be followed by other code or text. But it is not
treated as a real paragraph boundary like an empty line where filling a paragraph would
stop.

Paragraph commands like ‘\section’ or ‘\noindent’ (the list of commands is defined by
LaTeX-paragraph-commands) are often to be placed in their own line(s). This means they
should not be consecuted with any preceding or following adjacent lines of text. AUCTEX
will prevent this from happening if you do not put any text except another macro after
the end of the last brace of the respective macro. If there is other text after the macro,
AUCTEX regards this as a sign that the macro is part of the following paragraph.

Here are some examples:
\begin{quote}
text text text text
\begin{quote}\label{foo}
text text text text

If you press M-q on the first line in both examples, nothing will change. But if you write

\begin{quote} text
text text text text

and press M-q, you will get
\begin{quote} text text text text text

Besides code comments and paragraph commands, another speciality of filling in
AUCTEX involves commented lines. You should be aware that these comments are treated
as islands in the rest of the IATEX code if syntactic filling is enabled. This means, for
example, if you try to fill an environment with LaTeX-fill-environment and have the
cursor placed on a commented line which does not have a surrounding environment inside
the comment, AUCTEX will report an error.

The relevant commands and variables with regard to filling are:

C-c C-q C-p

LaTeX-fill-paragraph will fill and indent the current paragraph.
M-q Alias for C-c C-q C-p
C-c C-q C-e

LaTeX-fill-environment will fill and indent the current environment. This
may e.g. be the ‘document’ environment, in which case the entire document
will be formatted.

C-c C-q C-s

LaTeX-fill-section will fill and indent the current logical sectional unit.
C-c C-q C-r

LaTeX-fill-region will fill and indent the current region.

Chapter 3: Advanced Editing Features 17

M-g Alias for C-c C-q C-r

LaTeX-fill-break-at-separators [User Option]
List of separators before or after which respectively linebreaks will be inserted if they
do not fit into one line. The separators can be curly braces, brackets, switches for
inline math (‘$’, ‘\ (, ‘\)’) and switches for display math (‘\[’, ‘\1’). Such formatting
can be useful to make macros and math more visible or to prevent overfull lines in
the IATEX source in case a package for displaying formatted TEX output inside the
Emacs buffer, like preview-latex, is used.

LaTeX-fill-break-before-code-comments [User Option]
Code comments are comments preceded by some other text in the same line. When
a paragraph containing such a comment is to be filled, the comment start will be
seen as a border after which no line breaks will be inserted in the same line. If the
option LaTeX-fill-break-before-code-comments is enabled (which is the default)
and the comment does not fit into the line, a line break will be inserted before the
last non-comment word to minimize the chance that the line becomes overfull.

3.6 Showing and Hiding Text in the Buffer

While you are editing your text you might find certain parts of it distracting or not
worthwile to be displayed. AUCTEX lets you hide those parts and show them again at
request. There is a built-in support for hiding macros and environments which we call
"folding" here, as well as support for Emacs’ outline mode.

3.6.1 Folding

Are you often annoyed by footnotes and citations clobbering your text? Do you pull
your hair when you cannot see what you are actually writing because of all those macros
for font specification and logical mark-up? Then folding might be for you.

There can be macros and environments which have content that is not part of the text
body you are writing, like footnotes and citations. Those enclose text which you often only
want to see while actually editing it and which otherwise distract your view of the document
body. Similarly there are macros where you are not interested in viewing the macro besides
its content but rather want to see the content only, like font specifiers where the content
might already be fontified in a special way by font locking.

With AUCTEX’s folding functionality you can collapse those items and replace them by
either a fixed string or the content of one of their arguments instead. If you want to make
the original text visible again temporarily in order to view or edit it, move point sideways
onto the placeholder (also called display string) or left-click with the mouse pointer on it.
(The latter is currently only supported on GNU Emacs.) The macro or environment will
unfold automatically, stay open as long as point is inside of it and collapse again once you
move point out of it. (Note that folding of environments currently does not work in every

AUCTEX mode.)

In order to use this feature, you have to activate TeX-fold-mode which will activate the
auto-reveal feature and the necessary commands to hide and show macros and environments.

Chapter 3: Advanced Editing Features 18

You can activate the mode in a certain buffer by typing the command M-x TeX-fold-mode
RET or using the keyboard shortcut C-c C-o C-f. If you want to use it every time you edit
a IATEX document, add it to a hook:

(add-hook ’LaTeX-mode-hook ’(lambda ()
(TeX-fold-mode 1)))

If it should be activated in all AUCTEX modes, use TeX-mode-hook instead of LaTeX-
mode-hook.

Once the mode is active there are several commands available to hide and show macros
and environments:

TeX-fold-buffer [Command]
(C-c C-o C-b) Hide all macros specified in the variables TeX-fold-macro-spec-list
and TeX-fold-env-spec-list. This command can also be used to refresh the whole
buffer and hide any new macros and environments which were inserted after the last
invocation of the command.

TeX-fold-macro [Command]|
(C-c C-o C-m) Hide the macro on which point currently is located. If the name of the
macro is found in TeX-fold-macro-spec-list, the respective display string will be
shown instead. If it is not found, the name of the macro in sqare brackets or the de-
fault string for unspecified macros (TeX-fold-unspec-macro-display-string) will
be shown, depending on the value of the variable TeX-fold-unspec-use-name.

TeX-fold-env [Command]
(C-c C-o C-e) Hide the environment on which point currently is located. The
behavior regarding the display string is analogous to TeX-fold-macro and
determined by the variables TeX-fold-env-spec-1list and TeX-fold-unspec-env-
display-string respectively.

TeX-fold-clearout-buffer [Command]|
(C-c C-o C-x) Permanently unfold all macros and environments in the current buffer.

TeX-fold-clearout-item [Command]
(C-c C-o C-c) Permanently show the macro or environment on which point currently
is located. In contrast to temporarily opening the macro when point is moved sideways
onto it, the macro will be permanently unfolded and will not collapse again once point
is leaving it.

The commands above will only take macros or environments into consideration which
are specified in the variable TeX-fold-macro-spec-1list or TeX-fold-env-spec-list re-
spectively.

TeX-fold-macro-spec-list [User Option]
List of display strings or argument numbers and macros to fold. If you specify a
number, the content of the first mandatory argument of a IATEX macro will be used
as the placeholder.

The placeholder is made by copying the text from the buffer together with its prop-
erties, i.e. its face as well. If fontification has not happened when this is done

Chapter 3: Advanced Editing Features 19

(e.g. because of lazy font locking) the intended fontification will not show up. As a
workaround you can leave Emacs idle a few seconds and wait for stealth font locking to
finish before you fold the buffer. Or you just re-fold the buffer with TeX-fold-buffer
when you notice a wrong fontification.

TeX-fold-env-spec-list [User Option]
List of display strings or argument numbers and environments to fold. Argu-
ment numbers refer to the ‘\begin’ statement. That means if you have e.g.
‘\begin{tabularx}{\linewidth}{XXX} ... \end{tabularx} and specify 3 as the
argument number, the resulting display string will be “XXX”.

TeX-fold-unspec-macro-display-string [User Option]
Default display string for macros which are not specified in TeX-fold-macro-spec-
list.

TeX-fold-unspec-env-display-string [User Option]
Default display string for environments which are not specified in TeX-fold-env-
spec-list.

TeX-fold-unspec-use-name [User Option]

If non-nil the name of the macro or environment surrounded by square brackets is
used as display string, otherwise the defaults specified in TeX-fold-unspec-macro-
display-string or TeX-fold-unspec-env-display-string respectively.

3.6.2 Outlining the Document

AUCTEX supports the standard outline minor mode using IATEX/ConTEXt sectioning
commands as header lines. See section “Outline Mode” in GNU Emacs Manual.

You can add your own headings by setting the variable TeX-outline-extra.

TeX-outline-extra [Variable]
List of extra TEX outline levels.

Each element is a list with two entries. The first entry is the regular expression
matching a header, and the second is the level of the header. A ‘7 is automatically
prepended to the regular expressions in the list, so they must match text at the
beginning of the line.

See LaTeX-section-1list or ConTeXt-INTERFACE-section-1list for existing header
levels.

The following example add ‘\item’ and ‘\bibliography’ headers, with ‘\bibliography’
at the same outline level as ‘\section’, and ‘\item’ being below ‘\subparagraph’.

(setq TeX-outline-extra
>CC"E \NET\\\\\\ (bib\\) 7item\\b" 7)
("\\\\bibliography\\b" 2)))
You may want to check out the unbundled ‘out-xtra’ package for even better outline
support. It is available from your favorite emacs lisp archive.

Chapter 4: Starting processors, viewers and other programs 20

4 Starting processors, viewers and other programs

The most powerful features of AUCTEX may be those allowing you to run
(La)TEX/ConTEXt and other external commands like BibTEX and makeindex from
within Emacs, viewing and printing the results, and moreover allowing you to debug your
documents.

4.1 Executing Commands

Formatting the document with TEX, IATEX or ConTEXt, viewing with a previewer,
printing the document, running BibTEX, making an index, or checking the document with
lacheck or chktex all require running an external command.

There are two ways to run an external command, you can either run it on all of the
current documents with TeX-command-master, or on the current region with TeX-command-
region. A special case of running TEX on a region is TeX-command-buffer which differs
from TeX-command-master if the current buffer is not its own master file.

TeX-command-master [Command]|
(C-c C-c) Query the user for a command, and run it on the master file associated
with the current buffer. The name of the master file is controlled by the variable TeX-
master. The available commands are controlled by the variable TeX-command-1ist.

See Chapter 10 [Installation|, page 42, for a discussion about TeX-command-list and
Chapter 5 [Multifile], page 26 for a discussion about TeX-master.

TeX-command-region [Command]|
(C-c C-r) Query the user for a command, and run it on the “region file”. Some
commands (typically those invoking TEX or IATEX) will write the current region into
the region file, after extracting the header and tailer from the master file. If mark
is inactive (which can happen with transient-mark-mode), use the old region. The
name of the region file is controlled by the variable TeX-region. The name of the
master file is controlled by the variable TeX-master. The header is all text up to the
line matching the regular expression TeX-header-end. The trailer is all text from the
line matching the regular expression TeX-trailer-start. The available commands
are controlled by the variable TeX-command-list.

TeX-pin-region [Command]|
(C-c C-t C-r) If you don’t have a mode like transient-mark-mode active, where
marks get disabled automatically, the region would need to get properly set before
each call to TeX-command-region. If you fix the current region with C-c C-t C-r,
then it will get used for more commands even though mark and point may change.
An explicitly activated mark, however, will always define a new region when calling
TeX-command-region.

TeX-command-buffer [Command]
(C-c C-b) Query the user for a command, and run it on the “region file”. Some
commands (typically those invoking TEX or IATEX) will write the current buffer into

Chapter 4: Starting processors, viewers and other programs 21

the region file, after extracting the header and tailer from the master file. See above
for details.

AUCTEX will allow one process for each document, plus one process for the region file
to be active at the same time. Thus, if you are editing n different documents, you can have
n plus one processes running at the same time. If the last process you started was on the
region, the commands described in Section 4.3 [Debugging], page 23 and Section 4.5 [Con-
trol], page 24 will work on that process, otherwise they will work on the process associated
with the current document.

TeX-region [User Option]
The name of the file for temporarily storing the text when formatting the current
region.

TeX-header-end [User Option]

A regular expression matching the end of the header. By default, this is
“\begin{document}’ in IATEX mode and ‘/**end of header’ in TEX mode.

TeX-trailer-start [User Option]
A regular expression matching the start of the trailer. By default, this is
“\end{document}’ in IATEX mode and ‘\bye’ in TEX mode.

AUCTEX will try to guess what command you want to invoke, but by default it will
assume that you want to run TEX in TEX mode and IATEX in IATEX mode. You can
overwrite this by setting the variable TeX-command-default.

TeX-command-default [User Option]
The default command to run in this buffer. Must be an entry in TeX-command-1list.

If you want to overwrite the values of TeX-header-end, TeX-trailer-start, or TeX-
command-default, you can do that for all files by setting them in either TeX-mode-hook,
plain-TeX-mode-hook, or LaTeX-mode-hook. To overwrite them for a single file, define
them as file variables (see section “File Variables” in The Emacs Editor). You do this by
putting special formatted text near the end of the file.

%%% Local Variables:

%%t TeX-header-end: "Y, End-Of-Header"

%hth TeX-trailer-start: "¥ Start-0f-Trailer"
%%’ TeX-command-default: "S1iTeX"

%%% End:

AUCTEX will try to save any buffers related to the document, and check if the document
needs to be reformatted. If the variable TeX-save-query is non-nil, AUCTEX will query
before saving each file. By default AUCTEX will check emacs buffers associated with files in
the current directory, in one of the TeX-macro-private directories, and in the TeX-macro-
global directories. You can change this by setting the variable TeX-check-path.

TeX-check-path [User Option]
Directory path to search for dependencies.

If nil, just check the current file. Used when checking if any files have changed.

Chapter 4: Starting processors, viewers and other programs 22

TeX-PDF-mode [Command]|
(C-c C-t C-p) This command toggles the PDF mode of AUCTEX, a buffer-local minor
mode. You can customize TeX-PDF-mode to give it a different default. The default
is used when AUCTEX does not have additional clue about what a document might
want. This option usually results in calling either PDFTEX or ordinary TEX.

TeX-DVI-via-PDFTeX [User Option]
If this is set, DVI will also be produced by calling PDFTEX, setting \pdfoutput=0.
This makes it possible to use packages like ‘pdfcprot’ even when producing DVI files.

TeX-interactive-mode [Command|
(C-c C-t C-1i) This command toggles the interactive mode of AUCTEX, a global minor
mode. You can customize TeX-interactive-mode to give it a different default. In
interactive mode, TEX will pause with an error prompt when errors are encountered
and wait for the user to type something.

TeX-source-specials-mode [Command]
(C-c C-t C-s) toggles Source Special support. Source Specials will move the DVI
viewer to the location corresponding to point (forward search), and it will use
‘emacsclient’ or ‘gnuclient’ to have the previewer move Emacs to a location
corresponding to a control-click in the previewer window. See Section 4.2 [Viewing],
page 22.

You can permanently activate TeX-source-specials-mode with
(TeX-source-specials-mode 1)

or by customizing the variable TeX-source-specials-mode. There is a bunch of
customization options, use customize-group on the group ‘TeX-source-specials’
to find out more.

It has to be stressed very strongly however, that Source Specials can cause differences
in page breaks, in spacing, can seriously interfere with various packages and should
thus never be used for the final version of a document. In particular, fine-tuning the
page breaks should be done with Source Specials switched off.

4.2 Viewing the formatted output

AUCTEX allows you to start external programs for previewing your document. These are
normally invoked by pressing C-c C-c once the document is formatted or via the respective
entry in the Command menu.

AUCTEX will try to guess which type of viewer (DvI, PostScript or PDF) has to be used
and what options are to be passed over to it. This decision is based on the output files
present in the working directory as well as the class and style options used in the document.
For example, if there is a DVI file in your working directory, a DVI viewer will be invoked.
In case of a PDF file it will be a PDF viewer. If you specified a special paper format like
‘abpaper’ or use the ‘landscape’ option, this will be passed to the viewer by the appropriate
options. Especially some DVI viewers depend on this kind of information in order to display
your document correctly. In case you are using ‘pstricks’ or ‘psfrag’ in your document,
a DVI viewer cannot display the contents correctly and a PostScript viewer will be invoked
instead.

Chapter 4: Starting processors, viewers and other programs 23

The information about which file types and style options are associated with which
viewers and options for them is stored in the variables TeX-output-view-style and TeX-
view-style.

TeX-view [Command]|
The command TeX-view, bound to C-c C-v, starts a viewer without confirmation.
The viewer is started either on a region or the master file, depending on the last
command issued. This is especially useful for jumping to the location corresponding
to point in the DVI viewer when using TeX-source-specials-mode.

TeX-output-view-style [User Option]
List of output file extensions, style options and view options.

TeX-view-style [User Option]
List of style options and view options. This is the predecessor of TeX-output-view-
style which does not allow the specification of output file extensions. It is used
as a fallback in case none of the alternatives specified in TeX-output-view-style
match. In case none of the entries in TeX-view-style match either, no suggestion
for a viewer will be made.

4.2.1 Forward and inverse search

You can make use of forward and inverse searching if this is supported by your DVI
viewer and you enabled TeX-source-specials-mode as described in Section 4.1 [Com-
mands|, page 20. AUCTEX will automatically pass the necessary command line options to
the viewer in order to display the page containing the content you are currently editing
(forward search). Upon opening the viewer you will be asked if you want to start a server
process (Gnuserv or Emacs server) which is necessary for inverse search. This happens
only if there is no server running already. You can customize the variable TeX-source-
specials-view-start-server to inhibit the question and always or never start the server
respectively. Once the server and the viewer are running you can use a mouse click in
the viewer to jump to the corresponding part of your document in Emacs (inverse search).
Refer to the documentation of your viewer to find out what you have to do exactly. In xdvi
you usually have to use C-down-mouse-1.

TeX-source-specials-view-start-server [User Option]
If TeX-source-specials-mode is active and a DVI viewer is invoked, the default
behavior is to ask if a server process should be started. Set this variable to t if the
question should be inhibited and the server should be started always. Set it to nil if
the server should never be started. Inverse search will not be available in the latter
case.

4.3 Catching the errors

Once you’ve formatted your document you may ‘debug’ it, i.e. browse through the errors

(La)TEX reported.

Chapter 4: Starting processors, viewers and other programs 24

TeX-next-error [Command]|
(C-c ‘) Go to the next error reported by TEX. The view will be split in two, with the
cursor placed as close as possible to the error in the top view. In the bottom view,
the error message will be displayed along with some explanatory text.

Normally AUCTEX will only report real errors, but you may as well ask it to report ‘bad
boxes’ as well.

TeX-toggle-debug-bad-boxes [Command]|
(C-c C-w) Toggle whether AUCTEX should stop at bad boxes (i.e. over/under full
boxes) as well as at normal errors.

As default, AUCTEX will display that special ‘*help*’ buffer containing the error re-
ported by TEX along with the documentation. There is however an ‘expert’ option, which
allows you to display the real TEX output.

TeX-display-help [User Option]
When non-nil AUCTEX will automatically display a help text whenever an error is
encountered using TeX-next-error (C-c ¢).

4.4 Checking for problems

Running TEX or INTEX will only find regular errors in the document, not examples of bad
style. Furthermore, description of the errors may often be confusing. The utility lacheck
can be used to find style errors, such as forgetting to escape the space after an abbreviation
or using ‘... instead of ‘\1dots’ and many other problems like that. You start lacheck
with C-c C-c Check RET). The result will be a list of errors in the ‘*compilation*’ buffer.
You can go through the errors with C-x ¢ (next-error, see section “Compilation” in The
Emacs Editor), which will move point to the location of the next error.

Another newer program which can be used to find errors is chktex. It is much
more configurable than lacheck, but doesn’t find all the problems lacheck does, at
least in its default configuration. You must install the programs before using them,
and for chktex you must also modify TeX-command-list. You can get lacheck from
‘KURL:ftp://ftp.ctan.org/tex-archive/support/lacheck/>" or alternatively chktex
from ‘<URL:ftp://ftp.ctan.org/tex-archive/support/chktex/>’. Search for ‘chktex’
in ‘tex.el’ to see how to switch between them.

4.5 Controlling the output

A number of commands are available for controlling the output of an application running
under AUCTEX

TeX-kill-job [Command]|
(C-c C-k) Kill currently running external application. This may be either of TEX,
IATEX, previewer, BibTEX, etc.

TeX-recenter-output-buffer [Command]|
(C-c C-1) Recenter the output buffer so that the bottom line is visible.

Chapter 4: Starting processors, viewers and other programs 25

TeX-home-buffer [Command]|
(C-c ") Go to the ‘master’ file in the document associated with the current buffer, or
if already there, to the file where the current process was started.

Chapter 5: Multifile Documents 26

5 Multifile Documents

You may wish to spread a document over many files (as you are likely to do if there
are multiple authors, or if you have not yet discovered the power of the outline commands
(see Section 3.6.2 [Outline|, page 19)). This can be done by having a “master” file in which
you include the various files with the TEX macro ‘\input’ or the IATEX macro ‘\include’.
These files may also include other files themselves. However, to format the document you
must run the commands on the top level master file.

When you, for example, ask AUCTEX to run a command on the master file, it has no
way of knowing the name of the master file. By default, it will assume that the current file
is the master file. If you insert the following in your ‘.emacs’ file AUCTREX will use a more
advanced algorithm.

(setq-default TeX-master nil) ; Query for master file.

If AUCTEX finds the line indicating the end of the header in a master file (TeX-header-
end), it can figure out for itself that this is a master file. Otherwise, it will ask for the
name of the master file associated with the buffer. To avoid asking you again, AUCTEX
will automatically insert the name of the master file as a file variable (see section “File
Variables” in The Emacs Editor). You can also insert the file variable yourself, by putting
the following text at the end of your files.

%%h%h Local Variables:
%hl TeX-master: "master"
%%l End:
You should always set this variable to the name of the top level document. If you always
use the same name for your top level documents, you can set TeX-master in your ‘.emacs’

file.

(setq-default TeX-master "master") ; All master files called "master".

TeX-master [User Option]
The master file associated with the current buffer. If the file being edited is actually
included from another file, then you can tell AUCTEX the name of the master file by
setting this variable. If there are multiple levels of nesting, specify the top level file.

If this variable is nil, AUCTEX will query you for the name.
If the variable is t, then AUCTEX will assume the file is a master file itself.

If the variable is shared, then AUCTEX will query for the name, but will not change
the file.

TeX-one-master [User Option]
Regular expression matching ordinary TEX files.

You should set this variable to match the name of all files, for which it is a good idea
to append a TeX-master file variable entry automatically. When AUCTEX adds the
name of the master file as a file variable, it does not need to ask next time you edit
the file.

If you dislike AUCTEX automatically modifying your files, you can set this variable
to ‘"<none>"’. By default, AUCTEX will modify any file with an extension of ‘.tex’.

Chapter 5: Multifile Documents 27

TeX-master-file-ask [Command]
(C-c _) Query for the name of a master file and add the respective File Variables
(see section “File Variables” in The Emacs Editor) to the file for setting this variable
permanently.

AUCTEX will not ask for a master file when it encounters existing files. This function
shall give you the possibility to insert the variable manually.

AUCTEX keeps track of macros, environments, labels, and style files that are used in
a given document. For this to work with multifile documents, AUCTEX has to have a
place to put the information about the files in the document. This is done by having an
‘auto’ subdirectory placed in the directory where your document is located. Each time
you save a file, AUCTEX will write information about the file into the ‘auto’ directory.
When you load a file, AUCTEX will read the information in the ‘auto’ directory about the
file you loaded and the master file specified by TeX-master. Since the master file (perhaps
indirectly) includes all other files in the document, AUCTEX will get information from all
files in the document. This means that you will get from each file, for example, completion
for all labels defined anywhere in the document.

AUCTEX will create the ‘auto’ directory automatically if TeX-auto-save is non-nil.
Without it, the files in the document will not know anything about each other, except for
the name of the master file. See Section 8.3 [Automatic Local], page 33.

TeX-save-document [Command]
(C-c C-d) Save all buffers known to belong to the current document.

TeX-save-query [User Option]
If non-nil, then query the user before saving each file with TeX-save-document.

Chapter 6: Automatic Parsing of TEX files 28

6 Automatic Parsing of TEX files

AUCTEX depends heavily on being able to extract information from the buffers by
parsing them. Since parsing the buffer can be somewhat slow, the parsing is initially
disabled. You are encouraged to enable them by adding the following lines to your ‘. emacs’
file.

(setq TeX-parse-self t) ; Enable parse on load.
(setq TeX-auto-save t) ; Enable parse on save.

The later command will make AUCTEX store the parsed information in an ‘auto’ sub-
directory in the directory each time the TEX files are stored, see Section 8.3 [Automatic
Local], page 33. If AUCTEX finds the pre-parsed information when loading a file, it will
not need to reparse the buffer. The information in the ‘auto’ directory is also useful for
multifile documents see Chapter 5 [Multifile], page 26, since it allows each file to access the
parsed information from all the other files in the document. This is done by first reading
the information from the master file, and then recursively the information from each file
stored in the master file.

The variables can also be done on a per file basis, by changing the file local variables.

%%% Local Variables:

%h% TeX-parse-self: t
%h% TeX-auto-save: t

%%% End:

Even when you have disabled the automatic parsing, you can force the generation of
style information by pressing C-c C-n. This is often the best choice, as you will be able to
decide when it is necessary to reparse the file.

TeX-parse-self [User Option]
Parse file after loading it if no style hook is found for it.

TeX-auto-save [User Option]
Automatically save style information when saving the buffer.

TeX-normal-mode arg [Command]|
(C-c C-n) Remove all information about this buffer, and apply the style hooks again.
Save buffer first including style information. With optional argument, also reload the
style hooks.

When AUCTEX saves your buffer, it can optionally convert all tabs in your buffer into
spaces. Tabs confuse AUCTEX’s error message parsing and so should generally be avoided.
However, tabs are significant in some environments, and so by default AUCTEX does not
remove them. To convert tabs to spaces when saving a buffer, insert the following in your
‘.emacs’ file:

(setq TeX-auto-untabify t)

TeX-auto-untabify [User Option]
Automatically remove all tabs from a file before saving it.

Chapter 6: Automatic Parsing of TEX files 29

Instead of disabling the parsing entirely, you can also speed it significantly up by limiting
the information it will search for (and store) when parsing the buffer. You can do this by
setting the default values for the buffer local variables TeX-auto-regexp-list and TeX-
auto-parse-length in your ‘.emacs’ file.

;5 Only parse \documentstyle information.

(setq-default TeX-auto-regexp-list ’LaTeX-auto-minimal-regexp-list)
;3 The documentstyle command is usually near the beginning.
(setq-default TeX-auto-parse-length 2000)

This example will speed the parsing up significantly, but AUCTEX will no longer be
able to provide completion for labels, macros, environments, or bibitems specified in the
document, nor will it know what files belong to the document.

These variables can also be specified on a per file basis, by changing the file local variables.
%% Local Variables:
%ht TeX-auto-regexp-list: TeX-auto-full-regexp-list
%h% TeX-auto-parse-length: 999999
%% End:

TeX-auto-regexp-list [User Option]
List of regular expressions used for parsing the current file.

TeX-auto-parse-length [User Option]
Maximal length of TEX file that will be parsed.

The pre-specified lists of regexps are defined below. You can use these before loading
AUCTEX by quoting them, as in the example above.

TeX-auto-empty-regexp-list [Constant|
Parse nothing

LaTeX-auto-minimal-regexp-list [Constant]
Only parse documentstyle.

LaTeX-auto-label-regexp-list [Constant)|
Only parse IATEX labels.

LaTeX-auto-regexp-list [Constant|
Parse common IATEX commands.

plain-TeX-auto-regexp-list [Constant)]
Parse common plain TEX commands.

TeX-auto-full-regexp-list [Constant|
Parse all TEX and IATEX commands that AUCTEX can use.

Chapter 7: Internationalization 30

7 Internationalization

There are several problems associated with editing non-English TEX with GNU Emacs.
Modern versions of GNU Emacs and TEX are usable for European (Latin, Cyrillic, Greek)
based languages, but special versions of TEX and Emacs are needed for Korean, Japanese,
and Chinese.

7.1 Using AUCTEX for European languages.

First you will need a way to write non-ASCII characters. You can either use macros, or
teach TEX about the ISO character sets. I prefer the latter, it has the advantage that the
usual standard emacs word movement and case change commands will work.

With IATEX2e, just add ‘\usepackage[latinl]{inputenc}’. Other languages than
Western European ones will probably have other encoding needs.

To be able to display non-ASCII characters you will need an appropriate font and a
version of GNU Emacs capable of displaying 8-bit characters (e.g. Emacs 21). The manner
in which this is supported differs between Emacsen, so you need to take a look at your
respective documentation.

A compromise is to use an European character set when editing the file, and convert to
TEX macros when reading and writing the files.

‘iso-cvt.el’
Much like ‘iso-tex.el’ but is bundled with Emacs 19.23 and later.

‘x-compose.el’
Similar package bundled with new versions of XEmacs.

‘X-Symbol’
a much more complete package for both Emacs and XEmacs that can also
handle a lot of mathematical characters and input methods.

AUCTEX supports style files for several languages. Each style file may modify some
AUCTEX to better support the language, and will run a language specific hook that will
allow you to for example change ispell dictionary, or run code to change the keyboard
remapping. The following will for example choose a Danish dictionary for documents in-
cluding the ‘dk.sty’ file. This requires parsing to be enabled, see Chapter 6 [Parsing Files],
page 28.

(add-hook ’TeX-language-dk-hook
(function (lambda () (ispell-change-dictionary "danish"))))

The following style files are recognized.
‘dk’ Runs style hook TeX-language-dk-hook.

‘dutch’ Runs style hook TeX-language-nl-hook.

‘o

‘german’ Runs style hook TeX-language-de-hook. Gives ‘" word syntax and makes the

™M key insert a literal ‘"’.

‘italian’ Runs style hook TeX-language-it-hook. Pressing (M) will insert ’ or “ de-
pending on context.

Chapter 7: Internationalization 31

3 Y

plfonts

‘plhb’ Runs style hook TeX-language-pl-hook. Gives ‘"’ word syntax and makes the
(™M key insert a literal ‘"’. Pressing (M twice will insert ‘"<’ or ‘">’ depending
on context.

7.2 Japanese TEX

To write Japanese text with AUCTEX you need to have versions of TEX and Emacs that
support Japanese. There exist at least two variants of TEX for Japanese text (jTEX and
pTEX), and AUCTEX can be used with MULE supported Emacsen.

To install Japanese support for AUCTEX, copy ‘tex-jp.el’ to AUCTEX installed direc-
tory. Next two commands will automatically install contributed files.

make contrib
make install-contrib

See ‘INSTALL’ and ‘Makefile’ for more information.

To use the Japanese TEX variants, simply enter japanese-tex-mode, japanese-latex-
mode, or japanese-slitex-mode, and everything should work. If not, send mail to Shinji
Kobayashi ‘<koba@flab.fujitsu.co.jp>’, who kindly donated the code for supporting
Japanese in AUCTEX. None of the primary AUCTEX maintainers understand Japanese, so
they can not help you.

If you usually use AUCTEX in Japanese, setting following variables is useful.

TeX-default-mode [User Option]
Mode to enter for a new file when it can’t be determined whether the file is plain TEX
or IATEX or what.

To use Japanese TEX always, set japanese command for example:

(setq TeX-default-mode ’japanese-latex-mode)

japanese-TeX-command-default [User Option]
The default command for TeX-command in japanese TEX mode.

The default value is ‘jTeX’.

japanese-LaTeX-command-default [User Option]
The default command for TeX-command in japanese IATEX mode.

The default value is ‘jLaTeX’.

japanese-LaTeX-default-style [User Option]
The default style/class when creating new japanese IATEX document.

The default value is ‘j-article’.

See ‘tex-jp.el’ for more information.

Chapter 8: Automatic Customization 32

8 Automatic Customization

Since AUCTEX is so highly customizable, it makes sense that it is able to customize
itself. The automatic customization consists of scanning TEX files and extracting symbols,
environments, and things like that.

The automatic customization is done on three different levels. The global level is the
level shared by all users at your site, and consists of scanning the standard TEX style files,
and any extra styles added locally for all users on the site. The private level deals with
those style files you have written for your own use, and use in different documents. You
may have a ‘~/1ib/TeX/’ directory where you store useful style files for your own use. The
local level is for a specific directory, and deals with writing customization for the files for
your normal TEX documents.

If compared with the environment variable TEXINPUTS, the global level corresponds to
the directories built into TEX. The private level corresponds to the directories you add
yourself, except for ‘.’ which is the local level.

By default AUCTEX will search for customization files in all the global, private, and local
style directories, but you can also set the path directly. This is useful if you for example
want to add another person’s style hooks to your path. Please note that all matching files
found in TeX-style-path are loaded, and all hooks defined in the files will be executed.

TeX-style-path [User Option]
List of directories to search for AUCTEX style files. Each must end with a slash.

By default, when AUCTEX searches a directory for files, it will recursively search through
subdirectories.

TeX-file-recurse [User Option]
Whether to search TEX directories recursively: nil means do not recurse, a positive
integer means go that far deep in the directory hierarchy, t means recurse indefinitely.

By default, AUCTEX will ignore files name *.’, ‘.., ‘SCCS’, ‘RCS’, and ‘CVS’.

TeX-ignore-file [User Option]
Regular expression matching file names to ignore.

These files or directories will not be considered when searching for TEX files in a
directory.

8.1 Automatic Customization for the Site

Assuming that the automatic customization at the global level was done when AUCTEX
was installed, your choice is now: will you use it? If you use it, you will benefit by having
access to all the symbols and environments available for completion purposes. The drawback
is slower load time when you edit a new file and perhaps too many confusing symbols when
you try to do a completion.

You can disable the automatic generated global style hooks by setting the variable TeX-
auto-global to nil.

Chapter 8: Automatic Customization 33

TeX-macro-global [User Option]
Directories containing the site’s TEX style files.

TeX-style-global [User Option]
Directory containing hand generated TEX information. Must end with a slash.

These correspond to TEX macros shared by all users of a site.

TeX-auto-global [User Option]
Directory containing automatically generated information.

For storing automatic extracted information about the TEX macros shared by all users
of a site.

8.2 Automatic Customization for a User

You should specify where you store your private TEX macros, so AUCTEX can extract
their information. The extracted information will go to the directories listed in TeX-auto-
private

Use M-x TeX-auto-generate to extract the information.

TeX-macro-private [User Option]
Directories where you store your personal TEX macros. Each must end with a slash.

This defaults to the directories listed in the ‘TEXINPUTS’ and ‘BIBINPUTS’ environment

variables.

TeX-auto-private [User Option]
List of directories containing automatically generated information. Must end with a
slash.

These correspond to the personal TEX macros.

TeX-auto-generate TEX AUTO [Command]
(M-x TeX-auto-generate) Generate style hook for TEX and store it in AUTO. If
TEX is a directory, generate style hooks for all files in the directory.

TeX-style-private [User Option]
List of directories containing hand generated information. Must end with a slash.

These correspond to the personal TEX macros.

8.3 Automatic Customization for a Directory

AUCTEX can update the style information about a file each time you save it, and it
will do this if the directory TeX-auto-local exist. TeX-auto-local is by default set to
‘"auto/"’, so simply creating an ‘auto’ directory will enable automatic saving of style
information.

The advantage of doing this is that macros, labels, etc. defined in any file in a multifile

document will be known in all the files in the document. The disadvantage is that saving
will be slower. To disable, set TeX-auto-local to nil.

Chapter 8: Automatic Customization 34

TeX-style-local [User Option]
Directory containing hand generated TEX information. Must end with a slash.

These correspond to TEX macros found in the current directory.

TeX-auto-local [User Option]
Directory containing automatically generated TEX information. Must end with a
slash.

These correspond to TEX macros found in the current directory.

Chapter 9: Writing Your own Style Support 35

9 Writing Your own Style Support

See Chapter 8 [Automatic|, page 32, for a discussion about automatically generated
global, private, and local style files. The hand generated style files are equivalent, except
that they by default are found in ‘style’ directories instead of ‘auto’ directories.

If you write some useful support for a public TEX style file, please send it to us.

9.1 A Simple Style File

Here is a simple example of a style file.
;55 book.el - Special code for book style.

(TeX-add-style-hook "book"
(function (lambda () (setq LaTeX-largest-level
(LaTeX-section-level ("chapter"))))))

This file specifies that the largest kind of section in a IATEX document using the book
document style is chapter. The interesting thing to notice is that the style file defines an
(anonymous) function, and adds it to the list of loaded style hooks by calling TeX-add-
style-hook.

The first time the user indirectly tries to access some style specific information, such as
the largest sectioning command available, the style hooks for all files directly or indirectly
read by the current document is executed. The actual files will only be evaluated once, but
the hooks will be called for each buffer using the style file.

TeX-add-style-hook style hook [Function]
Add hook to the list of functions to run when we use the TEX file style.

9.2 Adding Support for Macros

The most common thing to define in a style hook is new symbols (TEX macros). Most
likely along with a description of the arguments to the function, since the symbol itself can
be defined automatically.

Here are a few examples from ‘latex.el’.

(TeX-add-style-hook "latex"
(function
(lambda Q)
(TeX-add-symbols
>("arabic" TeX-arg-counter)
>("label" TeX-arg-define-label)
’("ref" TeX-arg-label)
> ("newcommand" TeX-arg-define-macro ["Number of arguments"] t)
> ("newtheorem" TeX-arg-define-environment
[TeX-arg-environment "Numbered like"]
t [TeX-arg-counter "Within counter" 1)))))

Chapter 9: Writing Your own Style Support 36

TeX-add-symbols symbol . .. [Function]
Add each symbol to the list of known symbols.

Each argument to TeX-add-symbols is a list describing one symbol. The head of the
list is the name of the symbol, the remaining elements describe each argument.

If there are no additional elements, the symbol will be inserted with point inside braces.
Otherwise, each argument of this function should match an argument of the TEX macro.
What is done depends on the argument type.

If a macro is defined multiple times, AUCTEX